Confirmation on behalf of the Business Unit Industrial Cabinet Solutions

Dear Sir or Madam

The standard DIN 46228-4 “End sleeves - Part 4: Tubular end-sleeves with plastic sleeve” was revised and a new edition was published on 01 March 2020. In comparison with the previous revision dated 01 September 1990, the specifications regarding the material of the copper sleeves were extended.

With immediate effect, compliance with the standard now requires a tensile strength of the copper tube of at least Rm = 250 N/mm² and a maximum hardness of 105 HV.

With this document we confirm that the PHOENIX CONTACT ferrules with plastic sleeve (product family: „AI …“), ferrules without plastic sleeve (product family: „A …“) and TWIN ferrules (product family: „AI-TWIN 2x…“) comply with the requirements of the extended standard.
Explanation:

Compliance with the material characteristics is essential for the functionality of the crimp connection between the ferrule and the electrical conductor. The following characteristics need to be considered:

1. Geometry and dimensions
2. Mechanical strength
3. Electrical conductance

Ferrules with excessive hardness have a negative influence on the deformation process. With identical crimping force, harder ferrules achieve a lower degree of compression. If the crimping is not carried out completely, this can lead to problems regarding compliance with the characteristics listed above. Possible consequences might be:

1. The overall dimension of the crimp connection exceeds the dimensional specifications for the clamping spaces stated in DIN EN 60947-1.
2. The specifications for the conductor extraction force are not complied with. A durable connection between ferrule and electrical conductor is not guaranteed.
3. The contact resistance values between ferrule and electrical conductor are increased, possibly leading to unintended heat development or even loss of contact.

In order to achieve the required material characteristics, PHOENIX CONTACT ferrules are subjected to temperature curing. So-called soft annealing reduces the material hardness. This additional procedure therefore supports the deformation process. A reduction of the crimping force is obtained, which leads to an increase in the mechanical strength (conductor extraction forces) and an improvement of the electrical conductance by reducing the resistance. Tests have shown that the plastic deformation in the fusion process already starts at a 40% lower force level, compared to an uncured ferrule (see Fig. 1).

Fig. 1: Force/stroke diagram: Crimping of a cured (left) and an uncured ferrule (right).
Yours faithfully

PHOENIX CONTACT GmbH & Co. KG

i. A. i. A.

Dr. Michael Peter
Director Development and Quality Laboratory
Business Unit MI

Christian Dalmer, M.Sc.
Development Laboratory
Business Unit MI

The annexed information corresponds to our present knowledge. In this respect we specifically take the statements and indications of our suppliers and service providers as a basis.

Although we strive for up-to-dateness, completeness and correctness of the contents of our data we cannot guarantee them. The receiver himself is responsible for the evaluation of the information and the decisions derived there from.

Liability claims against Phoenix Contact GmbH & Co. KG, caused by the use or non-use of the information provided and/or the use of faulty and incomplete information or its non-availability, are generally excluded insofar as there is no evidence of willful or gross negligence on the part of Phoenix Contact GmbH & Co. KG.

As for the rest, our General Terms and Conditions of Delivery, Service and Payment shall be effective. They are available on our homepage http://www.phoenixcontact.de/agb.